PRI-8800 全自动变温培养土壤温室气体在线测量系统
主要特点
- 可设定恒温或变温培养模式;
- 温度控制波动优于±0.05℃;
- 平均升降温速率不小于1°C/min;
- 307 mL样品瓶,25位样品盘;
- 一体化设计,内置CO2 H2O模块;
- 可外接高精度浓度或同位素分析仪。
研究领域
1)利用其自动、连续、快速的特点,开展区域尺度的联网研究,揭示不同区域或植被类型的Q10变异及其控制机制。受传统培养和测试方法的影响,研究人员很难开展类似的研究,虽然整合分析能一定程度解决这个问题,但也存在不同实验处理条件和实验测定方法造成的高不确定性问题。
2)开展Q10对连续温度变化过程响应研究,更真实的模拟温度变化情况,从而揭示土壤微生物呼吸对温度变化的响应机制。受传统方法的限制,当前大多数研究均在小时、天、周尺度来开展,并没有揭示真实的温度日动态。
3)更好地开展土壤微生物对水分或资源快速变化情景下的研究。例如,降水脉冲是干旱-半干旱区的常见现象,土壤微生物活性(碳矿化速率或氮矿化速率)对水分可获得性的响应一直是非常重要又极具挑战性的科学问题;类似的,土壤微生物对外界资源脉冲式供应的响应或激发效应也是近期研究热点。
4)随着设备的广泛使用与改进,尤其是与13C分析设备相结合,相信会在土壤有机质周转领域具有更多的应用前景。
技术指标
指标 | 标准配置参数 |
样品瓶尺寸 | 5 cm D × 17 cm |
样品瓶容积 | 307.47 mL |
样品瓶材质 | 304不锈钢 |
转接环尺寸* | 6 cm × 6.5 cm |
转接环容积 | 73.68 mL |
转接环净容积 | 39.67 mL |
样品瓶和转接环净容积 | 287.21 mL |
转接环材质 | PTFE |
传感器安装工具 | 传感器线直径 ≤ 5 mm |
环刀尺寸* | 4.8 cm D × 8 cm H |
环刀材质 | 304不锈钢 |
培养瓶容积 | 150 mL,耐高低温玻璃瓶 |
样品盘盘位 | 25 位 |
温度控制范围 | -15~60 ℃ |
温度波动度 | ±0.05 ℃ |
ACC 温度 | +40 °C |
制冷量@20°C BT/20°C AT | 2000W |
平均升降温速率(5-30°C) | 1 ℃/min |
内胆尺寸(温控内腔) | 400 mm W × 400 mm D × 200 mm H(有效区域) |
自动进样器控制精度 | 0.02 mm |
气压传感器精度 | 0.05 % |
温度传感器精度 | ±0.15 ℃ |
气体流速 | 1 L/min |
气体管路 | 1/8 不锈钢管或特氟龙管 |
气路清洗 | 大气本底缓冲气 |
通风 | 前面板上门底部进风,后面板上部排风 |
外观 | 落地式,前部万向轮,后部固定轮 |
整机尺寸 | 762 mm W × 950 cm D × 1700 mm H |
电源 | 100~240 VAC,50/60 Hz |
8800-1 CO2 H2O 分析仪
性能指标 | |
CO2 测量范围 | 0-2000 ppm |
CO2 准确度 | ±2 % |
CO2 零点稳定性 | ±2 %(>12个月) |
CO2 重复性@零点 | ±0.3 % |
CO2 重复性@跨度 | ±1.5 % |
CO2 恒温下的零点漂移 | ±2 %/年 |
CO2 常温下的零点漂移 | ±0.03%/℃ |
H2O 测量范围 | 0~6 % |
H2O 准确度 | ±2 % |
标准工作温度 | -20~45 °C |
标准工作压力 | 800~1150 mbar |
取样流速 | 标准1 L/min,可调 |
预热时间 | 1 min |
校准频率 | 建议12月校准一次 |
湿度 | <99% R.H,无冷凝 |
配置说明
PRI-8800 可以选配不同的气体分析仪,如 CO2 H2O 分析仪、高精度 CO2 CH4 N2O H2O 分析仪、CO2 同位素分析仪等,具体请咨询销售人员。
PRI-8800 实验设计
4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(>90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。
PRI-8800 部分发表文章
1.Jun Pan, Yuan Liu, Nianpeng He, Chao Li, Mingxu Li, Li Xu, Osbert Jianxin Sun. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.
2.Zheng J, Mao X, van Groenigen K J, et al. Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau[J]. Geoderma, 2024, 441: 116736.Pa
3.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
4.刘源豪,熊德成,吴晨,王云,林德宝,黄锦学. 外源碳输入对常绿阔叶林土壤碳排放的影响. [J].森林与环境学报, 2023, 43(5).
5.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.
6.Xiaoliang Ma, Shengjing Jiang, Zhiqi Zhang, Hao Wang, Chao Song, Jin-Sheng He. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.
7.Yanghui He, Xuhui Zhou, Zhen Jia, Lingyan Zhou, Hongyang Chen, Ruiqiang Liu, Zhenggang Du, Guiyao Zhou, Junjiong Shao, Junxia Ding, Kelong Chen, Iain P. Hartley. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.
8.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.
9.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.
10.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.
11.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.
12.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.
13.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.
14.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.
15.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.
16.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.
17.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.
18.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.
19.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.
20.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.
21.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.
22.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.
23.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.
24.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.
25.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.
26.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.
27.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.